

KOREA NETUREN CO.,LTD.

www.korneturen.co.kr

韓國熱鍊株式會社 KOREA NETUREN CO.,LTD.

> E-mail: kneturen@korneturen.co.kr WEB SITE: http://www.korneturen.co.kr

KOREA NETUREN CO.,LTD.

www.korneturen.co.kr

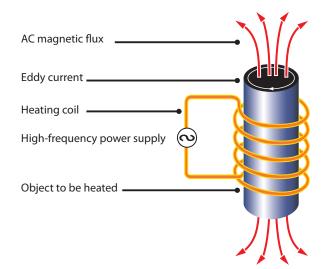
COMPANY PROFILE

As a specialized business enterprise of high-frequency induction heating, Korea Neturen joint-ventured with Neturen Japan, has supplied the newest equipment for rapidly growing domestic and overseas industry.

We started with Vacuum-tube type Oscillators and Thyristor(SCR) type, and now manufacture mainly Transistor type power supply. Realizing that the only competitiveness to survive in the industrialized society comes from higher quality products, we make every effort to raise the quality of our customers' products.

BUSINESS ITEMS

- · Induction Heating Systems for Hardening & Tempering
- · Power Supply of Transistor Inverter Type
- · Automatic Heating Machines


COMPANY HISTORY

Nov. 1987	Made a joint venture contract with Neturen Co., Ltd. of Japan.
Jan. 1988	Obtained the approval of foreign investment by the Korean government
Feb. 1988	Established the Corporation.
Jul. 1988	Completed the factory buildings.
Dec. 1988	Appointed as one of the Promising Small & Medium Companies by the Korean General Technology & Financing Corporation.
Dec. 1990	Appointed as one of the Companies with Superior Technology by the Korean Technology Credit Guarantee Funds.
Sep. 1991	Renewed the technical license agreement with Neturen Co.,LTD.
Nov. 1991	Appointed as one of the companies for military service exemption.
Dec. 1991	Awarded a prize for a leading company by the Minister of Commerce and Industry.
Dec. 1992	Awarded a prize for a leading company by the Korean Machinery Industry Promotion Corporation
Sep. 1996	Renewed the technical licence agreement with Neutren Co.,LTD.
Dec. 1997	Obtained Certificate of ISO9001
Jun. 1999	Selected as a Promising Exporter by Small Business Corporation.
Nov 2004	Obtained Certificate of ISO 9001:2000
Nov. 2005	Awarded the million dollar export prize by the Korea International Trade Association.
Apr. 2008	Obtained Certificate of Clean Factory
Nov. 2010	Obtained Certificate of ISO 9001:2008

High-Frequency Induction Heating

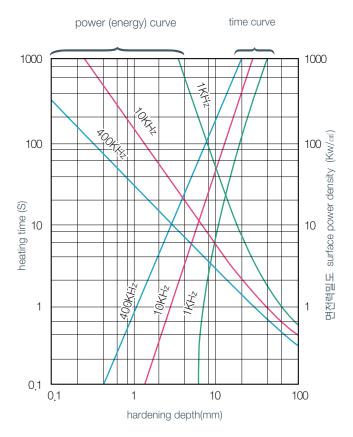
1. Principle of induction heating

The relation between heating coil and object(metal) to be heated in induction heating is similar to that between the primary and the secondary coils in a transformer. The magnetic flux generated by a high-frequency current in the heating coil is focused on the object as shown in the figure. This flux induces eddy currents in the object and so causes electromagnetic induction heating. By appropriately selecting the frequency and power of the alternating current, heating time, holding time, coil configuration and so on to match the type and shape of the steel material, the quality characteristics of the steel can be finely tailored.

2. High Frequency Current Penetration Depth

A high frequency electric current has a tendency to run concentratedly on the conductor surface, what is called skin effect. Therefore, electric current penetration depth δ is expressed as,

$$\delta = 5.03 \times 10^{3} \sqrt{\frac{\rho}{\mu s \cdot f}}$$


where μs = relative magnetic permeability

 ρ = specific resistance ($\mu \Omega \cdot cm$)

f = frequency (Hz)

At the points of penetration depth current density becomes 37% of that at the surface. At the normal temperature(α -steel) μ s \leq 100, for above curie point (γ -steel) μ s =1 specific resistance ρ (Ω · cm)=10~100×10-6 (from the room temp to quench heating temp)

temperature	specific resistance	relative	Frequency (kHz)			
(℃)	$(\times 10^6 \Omega \cdot cm)$	permeability (µs)	3	10	100	
20	20	100	0.04	0.02	0.01	
800	120	20	0.23	0.12	0.04	
820~880	120	5	0.45	0.24	0.08	
1000	130	1	1.05	0.57	0.18	
1200	135	1	1.06	0.57	0.18	

<relationship between hardening depth and high frequency, surface power density and heating time>

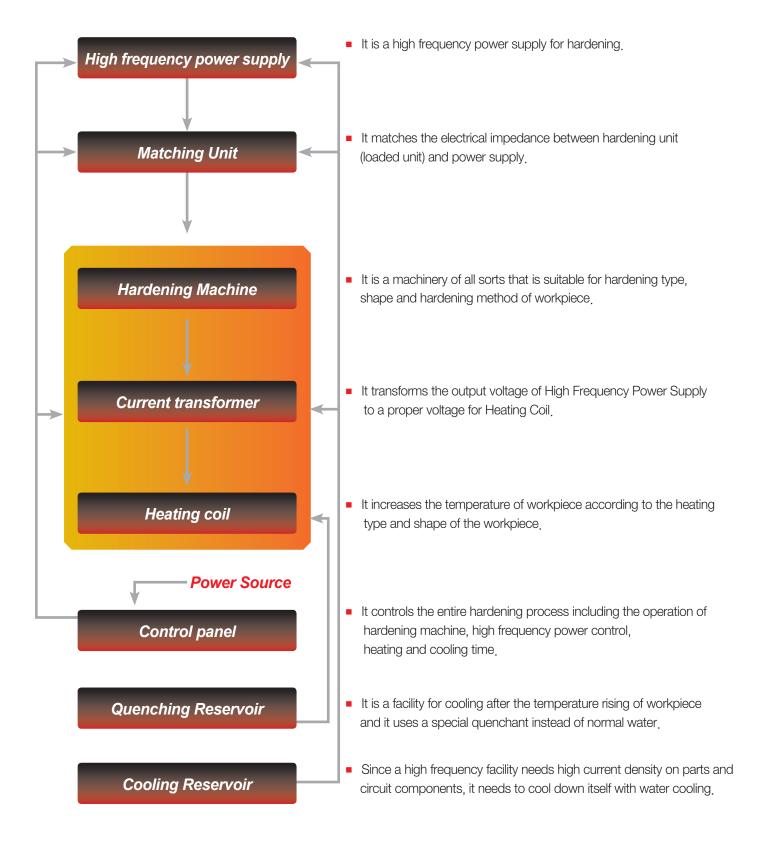
Frequency (kHz)	Penetration depth(mm)	Valid depth of hardening depth (mm)					
(14112)	αοραι(ππη	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5					
10	5						
20	3.6						
50	2,3						
100	1.5						
200	1,1						

^{**} Relation between frequency and hardening depth

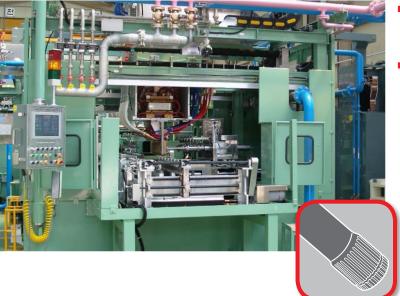
High-Frequency Induction Heating

3. Purpose and characteristics of high-frequency heat treatment

The purpose of high-frequency heat treatment for surface hardening is to improve abrasion resistance and fatigue strength by selecting the hardening depth in a flexible way. In induction heating, electromagnetic induction is used to convert electrical energy into heat energy within the metal itself. High-frequency heat treatment using this method has many benefits.


- · Heating efficiency is high and work time is short, which results in savings in terms of energy and cost.
- · Heating can be done in the specified area, and hardening depth can be selected in a flexible way.
- Rapid heating/cooling is possible, and the compressive residual stress on the surface enhances fatigue strength.
- · There is no worry about oxidation or decarburization, and there is less deformation.
- · As electro-magnetic energy is used, it is easy to operate/standardize/automate.
- · The working environment is pleasant and there is little pollution generated.

Induction Heating System Diagram


Induction Heating Equipment

The Best Component for Total System

For the most reliable induction heating systems, please contact Korea Neturen Co.,Ltd.

Our customer-satisfaction system is designed for your specific application with higher reliability, efficiency and productivity.

1. Drive Shaft

- Work function
 Delivering the traction from T/M joint to wheel joint
- Equipment specification
 Generator type: MK16A
 For hardening: 300kW-6kHz
 For tempering: 75kW-3kHz

Machine type : Full automatic hardening

& tempering

(Four spindle horizontal type)

2. CV Joint (TJ outer race)

- Work function
 Delivering the traction from T/M to Trunnion
- Equipment specification
 Generator type: MK16A

For hardening: 300kW-10/50kHzFor tempering: 50kW-3kHzMachine type: Full automatic hardening

& tempering

Korea Neturen is well known as the leading company of the induction heating technology, and has worked steadily over many years for technical development and quality improvement. With applications in machinery used in construction, agriculture and machine tools and for mechanical parts of vehicles, ships, internal combustion engines and so on, induction hardening is an asset to enhancing quality and performance.

3. CV Joint(BJ outer race)


- Work function
 Connected to wheels and delivers transmitted traction from the ball to wheels
- Equipment specification Generator type: MK16A

For hardening: 200kW-10/15kHzFor tempering: 50kW-3kHz

Machine type: Full automatic hardening

& tempering

4. Axle shaft

■ Work function

Rotates the front wheels of a vehicle by converting rotational motion of the steering wheel into linear reciprocating motion

■ Equipment specification Generator type: MK16A

- For hardening : 300kW-3/10kHz Type of M/C : Semi-auto Hardening

> (Two spindle vertical type) Heating process : Auto, L/Unloading : Manual

Induction Heating Equipment

The Best Component for Total System

From power input to finish processing, Korea Neturen system is designed to keep you most competitive. Surface heat treatment helps to enhance mechanicial properties such as abrasion resistance, flexual strength, torsional rigidity and fatigue strength of complex, irregularly shaped parts used in major components of automobiles, construction machinery, machine tools and so on.

5. Wheel bearing (HUB)

- Work functionDelivering the power of BJ outer ring to disc
- Equipment specification

 Generator type: MK16A

 For hardening: 200kW-15kHz

 For tempering: 50kW-3kHz

 Machine type: Full automatic hardening

& tempering

6. Wheel bearing (Outer ring)

■ Work function

Minimizing the friction and power of BJ outer ring and delivering them smoothly

■ Equipment specification

Generator type: MK16A

For hardening: 200kW-30kHzFor tempering: 50kW-10kHz

Machine type: Full automatic hardening

& tempering

7. Wheel bearing (Front HUB)

- Work functionDelivering the power of BJ outer ring to disc
- Equipment specification

 Generator type: MK16A

 For hardening: 200kW-15kHz

- For hardening : 200kW-15kHz

Machine type: Full automatic hardening

& tempering

8. Rack steering bar

■ Work function

Rotates the front wheels of a vehicle by converting rotational motion of the steering wheel into linear reciprocating motion

■ Equipment specification

Generator type: MK16A

For hardening : 200kW-25kHzFor tempering : 75kW-3kHz

Type of M/C: Full automatic hardening &

tempering (Two spindle horizontal type)

■ Work name: GEAR

■ Work name: BALL RACE

■ Work name: CRANK SHAFT FOR MOTOR CYCLE

Induction Power Supply (MK16A)

The diversity of induction heating application calls of a broad range of power sources, both in frequency and output power.

Korea Neturen supplies wide range of induction generators.

Features

■ Frequency and Output

The MK16A accommmodates a frequency range of 1kHz to 50 kHz at an output range of 50kW to 600kW. Refer to the following ratings for details.

■ Energy Savings

MK16A Transistor inverters are operated with phase angle $0(\cos \emptyset = 1)$ and use high-speed and low-loss device. This results in a 5% reduction in input power and a 44% reduction in the required cooling water.

■ Compact Design

The comprehensive semiconductor design reduces the installation space by 73% compared with our Thyristor inverters and 84% with our Vacuum tube oscillators. (See attached table).

■ Easy maintenance and Inspection

Transistors, printed circuit boards and other components are all placed at the front for easy maintenance access. Cooling water circulation system(option) helps to solve the water problems.

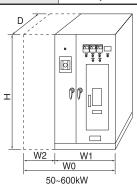
■ Dependable Protective Circuits

The following protective circuits ensure safe inverter operation in case of touching coils, no-load operations, over-load operations and other operations errors.

Tripping operations

- Door Interlock
 Cooling Water Flow
 Water temp.
 IDC trip
 HI,F trip
 Phase trip
- Limited operations
 - · IDC limit · VL limit · Power limit

MK16A Transistor Inverter Ratings


Output	Output capacity(kW)	50	75	100	150	200	250	300	400	500	600
Out	Frequency(kHz)		1-50								
Input	Voltage(V)		3ø, 440V±10%, 50/60Hz								
u	capacity(kVA)		Output(kW) \div 0.95=Input(kW) Output(kW) \times 1.4=In						ut(kVA)		
ت <u>م</u>	Water flow(L/min)		25/35		45,	/60	60,	/80	85/115	100/135	120/160
Cooling Water	Water inlet/outlet dia.	20A/25A					25A,	/32A	40A/50A		
0 >	Common Specifications	Water pressure: 0.2-0.4MPa, Water temperature: below 35						ow 35℃			
	Height H(mm)	1650				1950			23	50	
2	Inverter W1(mm)	800					10	00	1200	1400	1800
External Dimensions	Cooling System W2(mm)	500								700	
	Total Width W0(mm)	1300				15	00	1900	2100	2500	
	Depth D(mm)		800							1000	
	Mass(kg)	470/700 550/800 600/900				800/	1100	1100/1400	1300/1600	1500/1800	

^{*} Input capacity does not include KVA for cooling water system.

Meeting the Growing Demand for High Performance & Compact Design

Comparison of MK16A Inverter with Thyristor Invertoer and Vacuum tube oscillator (Compared with 150kW-8.5kHz Neturen Thyristor Inverter and Vaccum 150kW-200kHz Vaccum Tube Oscillator)

Equipment Item	Transistor Inverter	Thyristor Inverter	Remarks	Vacuum tube oscillator	Remarks
Overall conversion efficiency(%)	95	90	Output/power input	65-70	Output/power input
Input capacity(kVA)	210	180	3ø,440V	300	3ø,440V
DC Voltage(kV)	0.7	0.7		14	
Cooling water flow (L/min)	45	80	44% reduction in water consumption	150	70% reduction in water consumption
Dimensions(mm)	800(W)×800(D)×1950(H)	2000(W)×1200(D)×2050(H)	73% reduction in floor space	2610(W)×1530(D)×2050(H)	84% reduction in floor space
Mass(kg)	Approx. 600	Approx. 1,700	65% reduction in total mass	Approx. 4,200	86% reduction in total mass
Start/Stop	Momentary	Momentary		Preheat and cool time for filament	
Service life	Infinite	Infinite		Life of vacuum tube (5,000-10,000Hrs.)	
Radio wave Emission	Small	Small		Large	
Operation cost	Lower cost due to higher efficiency and less water	Higher cost due to lower efficiency and more water		Higher cost due to lower efficiency and more water	

Outline Drawings

- * Dotted line indicates cooling water circulation system and it is optionally available.
- * Cooling water circulation system with ion-exchanger and without (Supply and circulate deionized water) ion-exchanger are both available.

^{*} Larger values in dual ratings are for equipment with cooling water circulation system and smaller for without system.

Induction Power Supply (MK22B)

Next Generation Transistor Inverter developed by Hi-Tech & Extensive Experience

Features

Frequency and Output

The MK22B accommodates a frequency range of 100kHz to 350kHz at an output range of 80kW to 480kW. In case of short time heating, output power can be incresed. Refer to the following ratings for details.

■ Energy Savings

Because transistors are used instead of vacuum tubes, input power can be reduced 22% and cooling water can be saved 61%

Compact Design

The comprehensive solid-state and low-voltage design facilitates the compact unit size to reduce the required installation space to 31% the space required by conventional vacuum tube oscillator models

■ Easy maintenance and Inspection

Transistors, printed circuit boards and other components are all placed at the front for easy maintenance access. Cooling water circulation system(option) helps to solve the water problems.

■ Dependable Protective Circuits

The following protective circuits ensure safe inverter operation in case of touching coils, no-load operations, over-load operations and other operation errors.

Tripping operations

- Door Interlock
- Cooling Water Flow
- Water inlet/outlet temp.
- IAC trip IDC trip
- · Phase fault

- · LOW F trip
- · HI_.F trip
- Tank fault(coil short)
- · Tank cap. V trip

Θ W2 W1 80~480(kW)

Outline Drawings

- * Dotted line at the left side indicates cooling water circulation system and it is optionally available.
- * Cooling water circulation system with ion-exchanger and without (Supply and circulate deionized water) ion-exchanger are both available.

MK22B Transistor Inverter Ratings

out	Output capacity(kW)	80	120	160	200	240	280	480	
Output	Frequency(kHz)		10	00, 200, 300, 3		100, 200			
Ħ	Voltage(V)	3 ø , 440V±10%, 50/60Hz							
Input	capacity(kVA)	$Output(kW) \div 0.9 = Input(kW) \qquad Output(kW) \times 1.4 = Input(kVA)$							
D ,	Water flow(L/min)	32/45	50/75	65/90	85/120	125/175	140/200	200/280	
Cooling Water	Water inlet/outlet dia.	20A/25A	25A,	/32A	32A/32A	40A/50A		50A/50A	
0 -	Common Specifications	Water pressure: 0.2-0.4MPa, Water temperature: below 35°c							
	Height H(mm)	1950 2050							
Ø	Inverter W1(mm)	800		1000		1700		2900	
External Dimensions	Cooling System W2(mm)		50	00	700				
Ext	Total Width W0(mm)	1300 1500				2400		3600	
	Depth D(mm)	800					1200		
	Mass(kg) 600/900 1000/1300 1300/1600		1300/1600	1400/1700	2000/	/2800	3000/3800		

^{*} Input capacity does not include KVA for cooling water system.

Comparision of MK22B Inverter and Vacuum Tube Oscillator

(Compared with 200kW-200kHz Neturen Vaccum Tube Osillator)

Equipment Item	Transistor Inverter	Vacuum tube oscillator	Remarks
Overall conversion efficiency(%)	90	65-70	Output/input power
Input capacity(kVA)	280	400	3ø,400/440V
DC Voltage(kV)	0.7	13	
Cooling water flow (L/min)	85	220	61% reduction in water consumption
Dimensions(mm)	2000(W)×800(D)×2050(H)	3350(W)×1530(D)×2650(H)	69% reduction in floor space
Mass(kg)	Approx. 1,400	Approx. 4,200	67% reduction in total mass
Start/Stop	Momentary	Preheat and cool time for filament	
Service life	Infinite	Life of vacuum tube (5,000-10,000Hrs.)	
Operation cost	Lower cost due to higher efficiency and less water	Higher cost due to lower efficiency and more water	

^{*} Dimension of Transistor Inverter is included matching panel for comparision with Vacuum Tube Oscillator. Dimension of Vacuum tube oscillator including High tension rectifier transformer.

^{*} Larger values in dual ratings are for equipment with cooling water circulation system and smaller for without system.

KOREA NETUREN FINE HEAT TECHNOLOGY

Induction Heat Treatment Services

With induction power supplies for a wide range of frequency and specific jigs for hardening use, we provide induction hardening services tailored to nearly all types of machine parts.

Induction Hardening

> Surface Heat Treatment

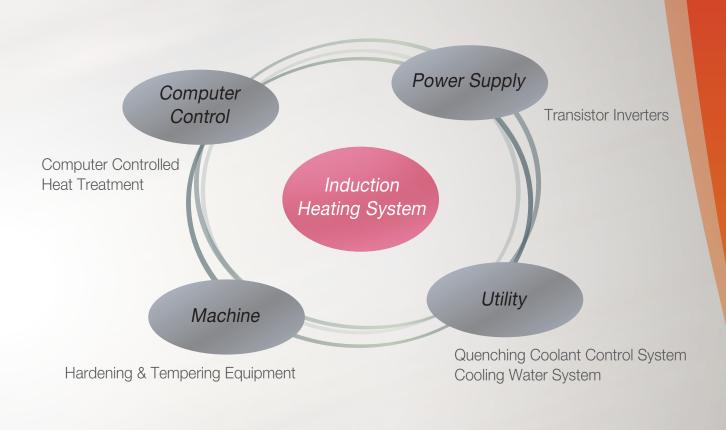
Automotive Parts

Construction Machine Parts

Machine Tool Parts

General Industrial Machine Parts

Inspection Instruments for Quality Check


Realizing that the only competitiveness to survive in the industrialized society comes from higher quality products, we make every effort to raise the quality of our customers' products.

Power Cutting Machine

Rockwell hardness testing machine

Micro vickers testing machine